На разные экспериментальные методы мозг откликается по-разному, что может приводить к диаметрально противоположным выводам.
Читая какую-нибудь новость по нейробиологии, мы рано или поздно встретим что-то вроде «исследователи… стимулировали/подавляли активность нейронов мозга». Способы стимуляции могут быть самыми разными, от специальных веществ, подавляющих или возбуждающих нервные клетки, до оптогенетических методов, когда в нейроны вводится ген фоточувствительного белка, а потом с помощью оптоволокна, внедрённого в мозг, этот белок – и нейроны вслед за ним – возбуждаются световыми импульсами. Такие эксперименты – необычайно ценный источник сведений о функционировании мозга: воздействуя те или иные на нейроны, мы можем определить функцию, например, конкретного участка коры полушарий.
Однако, вмешиваясь в работу нервных цепочек, не меняем ли мы тем самым их функции? Не распространяется ли влияние исследователя на другие области мозга, которые как будто не должны быть затронуты экспериментом? В статье, опубликованной в Nature группой нейробиологов из Гарварда, говорится, что такая опасность действительно существует: мы можем прийти к ошибочным выводам из-за того, что мозг из-за нашего вмешательства повёл себя не так, как обычно.
Бенс Олвечки (Bence Olveczky)и его коллеги изучали моторную кору у крыс: животных учили нажимать на рычаг некоего устройства, чтобы получить награду, после чего инактивировали участок коры, отвечающей за движения, и наблюдали за тем, сможет ли крыса выполнить выученное задание. Нейроны инактивировали с помощью специального вещества, подавляющего работу нейромедиаторов; его действие было недолгим, так что нервные клетки вскоре снова возвращались в строй. Однако случилось так, что у одной из крыс при манипуляциях с мозгом безнадёжно повредили небольшой участок двигательной коры. От животного, тем не менее, не отказались, а расширили область повреждения так, чтобы в неё вошли все те нейроны, которые подлежали отключению – только на сей раз отключение было окончательным и бесповоротным.
При кратковременном ингибировании работы нервных клеток ничего странного не происходило – крысы оказывались неспособны скоординировать движения и нажать на рычаг, из чего можно было бы сделать вывод, что отключённые нейроны обладают такой-то и такой-то функцией. Однако крысы с убитыми нервными клетками то же самое задание прекрасно выполняли, из чего можно было бы сделать совершенно противоположный вывод – что те же самые нейроны такой функцией не обладают. Иными словами, кратковременное отключение нейронов и постоянное отключение приводили к разным результатам.
То же самое было и с зебровыми амадинами: в зависимости от того, как у них инактивировали нейроны определённого участка мозга, на время или навсегда, птицы либо продолжали петь брачные песни, либо у них с этим возникали серьёзные проблемы. К временным методам воздействия относится и оптогенетика (ведь здесь нейроны включаются не пожизненно), и, как оказалось, с ней ситуация такая же: воздействие на мозг оптогенетическими методами давало иные результаты, нежели в том случае, когда изменения в нейронах были постоянными.
По словам Джулио Тонони (Giulio Tononi), специалиста в области поведенческой нейробиологии в Висконсинском университете, полученные результаты очень похожи на диасхиз – так в клинике называют временную утрату функций в одном участке нервной системы из-за повреждений в другом её участке. Диасхиз позволяет объяснить исчезновение и последующее возвращение некоторых нервных функций после инсульта: например, если из-за удара рука или нога стали неподвижны, то это не значит, что нейроны, отвечающие за их подвижность, погибли – они могут оставаться вполне живыми, просто временно чувствуют влияние действительно повреждённого участка мозга.
Иллюстрация к статье:
Обсуждение